Ace Ethanol, LLC Stanley, Wisconsin

Control Technology Plan

November 24, 2003

Prepared by:

Environmental Resource Group, LLC 1000 IDS Center 80 South Eighth Street Minneapolis, Minnesota 55402

CONTENTS

1.0 INTRODUCTION	1-1
2.0 EMISSION UNITS REQUIRING POLLUTION CONTROL EQUIPMENT	2-1
3.0 ENGINEERING DESIGN CRITERIA FOR POLLUTION CONTROL EQUIPM ENT	3-1
4.0 PROPOSED EMISSION LIMITS FROM POLLUTION CONTROL EQUIPMENT	4 -1
5.0 POLLUTION CONTROL EQUIPMENT INSTALLATION SCHEDULE	5-1
6.0 PROPOSED MONITORING PARAMETERS FOR POLLUTION CONTROL DEVICES	6-1
7.0 POLLUTION CONTROL DEVICE PERFORMANCE TEST SCHEDULE AND METHODS	7-1
8.0 FUGITIVE DUST EM ISSION CONTROL PROGRAM	8- 1

1.0 INTRODUCTION

In November 2003, Ace Ethanol, LLC (Ace) signed a consent decree that requires Ace to implement a program of compliance at the corn dry mill ethanol plant it operates in Stanley, Wisconsin. Ace prepared and submits this Control Technology Plan (CTP) as an integral part of the consent decree. This CTP has been reviewed and approved by the US Environmental Protection Agency (USEPA) and the Wisconsin Department of Natural Resources (WDNR) as part of the consent decree.

Ace's CTP includes the following:

3

- (a). Identification of all units to be controlled;
- (b). Engineering design criteria for all proposed controls capable of meeting the emission levels required by Part V of the Consent Decree;
- (c). Proposed short-term and long-term emission limits and controlled outlet concentrations for each pollutant as appropriate;
- (d). A schedule for expedited installation with specific milestones applicable on a unit-by-unit basis;
- (e). Proposed monitoring parameters for all control equipment and parameter ranges;
- (f). Identification of all units to be emission tested under Paragraph 11 of the Consent Decree and a schedule for initial tests and retest;
- (g). The test methods that will be used to demonstrate compliance with the emissions levels set forth in the Consent Decree; and
- (h). Program for minimization of fugitive dust emissions from facility operations.

2.0 EMISSION UNITS REQUIRING POLLUTION CONTROL EQUIPMENT

The following emission units, fugitive sources, and control equipment have been designated as affected units in the consent decree and have emission limits requiring pollution control technology.

dil o suppersiólité.	de la companya de la					
B50	Boiler #1	NA	NA NA			
P20	Fermenter #1	20	scrubber			
P21	Fermenter #2	20	scrubber			
P22	Fermenter #3	20	scrubber			
P23	Beerwell	20	scrubber			
P24	Beer Stripper	21	scrubber			
P25	Molecular Sieve System	21	scrubber			
P26	Evaporator	21	scrubber			
P27	Rectifier	21	scrubber			
P28	Side Stripper	21	scrubber			
P29	Slurry Tank	21	scrubber			
P30	Yeast Propagation		scrubber			
P32	Fermenter #4	20	scrubber			
P40	DDGS Dryer #1		DDGS Dryer #1 40, 41		Multiclone and RTO	
R10	Regenerativé Thermal Oxidizer	41	RTO			
F01	Truck Traffic	NA	Paved roads			
F04	Loading Rack	12	Flare			
F05	Valve, Flange, & Seal Fugitives	NA	LDAR			

3.0 ENGINEERING DESIGN CRITERIA FOR POLLUTION CONTROL EQUIPMENT

After identifying the affected units that require installation of air pollution control technology, Ace Ethanol conducted a design and engineering review of each unit to select the pollution control technology that would achieve the emission level reductions identified in the consent decree.

ing and the state of the state		anaki ingk	opolenia pienimi na propins		
Fermentation and	C20	Packed Bed	Exhaust flow rate: 4,000 cfm		
Beerwell		Scrubber	Water flow rate ≥ 30 gal/min.		
DDGS Dryer #1 (with	C40,	Multiclones	Exhaust flow rate: 90,000 cfm		
low NO _x burner)	C41	Regenerative	Residence time: 0.5 seconds		
		Thermal Oxidizer	Combustion chamber orientation		
		for VOC, CO and PM/PM ₁₀ control	Operating temperature: = 1575 °F		
			Design fuel input rate: 18 MMBtu/hr		
Boiler #1	B50	Low NO _x burner	Design fuel input rate: 60 MMBtu/hr		
Ethanol Truck Load- out	C12	Flare system	95% VOC combustion, flare operation consistent with 40 CFR 60.18 provisions		

November, 2003

4.0 PROPOSED EMISSION LIMITS FROM POLLUTION CONTROL EQUIPMENT

Unless otherwise stated, all controlled emission limitations apply at all times except during periods when the process equipment is not operating or during previously planned startup and shutdown periods, and malfunctions as defined in 40 CFR section 63.2. The provisions of sections NR436.03, NR 439.03, and NR 439.11 Wisconsin Adm. Code are also applicable. These startup and shutdown periods shall not exceed the minimum amount of time necessary for these events, and during these events, Ace shall minimize emissions to the greatest extent practicable. To the extent practical, startup and shutdown of control technology systems will be performed during times when process equipment is also shut down for routine maintenance.

Any deviation from the requirements in 4.0 and/or 4.1 shall be reported in the quarterly reports and as required under other state and federal rules.

234. M3.353 24. M3.353	Genna SASA	ere e e e e e e e e e e e e e e e e e e			ena. Aulseb waa
Fermentation and Beerwell	C20	Packed Bed Wet Scrubber	VOC	95% reduction or <20 ppm if inlet concentration is below 200 ppm; lb/hr limits to be established based on performance testing under the process outline under Paragraph 19 in the Consent Decree.	
			HAPs		12-month rolling sum total facility emission cap of 9.0 TPY for any single HAP and 24.0 TPY for total HAPs.

4-1

iteration Time applica		Toma in the		Sme Section	
Boiler #1	B50	Low NO _x Burner	NO _x	0.04 lb NO _x /MMBtu	wilder and the party of the par
			,	, , , , , , , , , , , , , , , , , , ,	
		*.		C.	
	·	•			•
				· ·	
				√2 	
Truck Loadout	C12	Flare	voc	95% reduction	
			HAPs	95% reduction	12-month rolling sum total facility emission cap of 9.0 TPY for any single HAP and
					24.0 TPY for total HAPs.
DDGS Dryer #1	C40, C41	Dryer#1 multiclones for PM/PM ₁₀ control	со	90% reduction or emission no higher than 100	
	·	Regenerative Thermal Oxidizer for VOC, PM/PM ₁₀ and CO control		ppm	
	-	and CC Condo			
			NO _x	0.04 lb NO _x /MMBtu (dryer outlet)	
		·			
					•

Parting Partin		Signature Salescontre	ing sa
	PM/PM ₁₀	Test and set pursuant to process outlined under paragraph 19 of the Consent Decree	
	VOC	95% reduction or 10 ppm outlet concentration; lb/hr limits to be established based on performance testing under the process outline in paragraph 19 under the Consent Decree.	
1	HAPs		12-month rolling sum total facility emission cap of 9.0 TPY for any single HAP and 24.0 TPY for total HAPs.

For all source-wide emission limits during the first 11 months of operation, the facility will maintain the following source-wide limits in Tons Per Year:

	Mo 1	Mo 2	Мо 3	Mo 4	Mo 5	Mo 6	Mo 7	8 oM	Mo 9	Mo 10	Mo 11
Individual HAP/	1.6/	3.2/	4.0/	4.8/	5.6/	6.4/	7.2/	8.0/	8.2/	8.5/	8.8/
Total HAPs	3.0	6.0	9.0	12	14	16	18	20	21	22	23

5.0 POLLUTION CONTROL EQUIPMENT INSTALLATION SCHEDULE

Regenerative Thermal Oxidizer (with low NOx burner)

Dryer #1 (with low NOx burner)	하상에 있는 그리지만 그는 말이 하루 것으로 했다. 1995년 중에 나를 보는 것이 되었다.
Differ #1 (with low NOX burner)	교통화 보고 생각하다 한 얼마를 보는 것으로.

•

November, 2003

5-1

6.0 PROPOSED MONITORING PARAMETERS FOR POLLUTION CONTROL DEVICES

The consent decree requires that monitoring parameters be established for affected pollution control devices. Following startup of a control device described below, Ace agrees to the following monitoring and operating parameters for each of the affected pollution control devices.

Bungato Qake	Ponto il Prodes S. 11 Basisti (1878)	Zeledikia Nichiana	enemokene	i i i i i i i i i i i i i i i i i i i
C20	Fermentation Scrubber	Pressure Drop and Water Flow Rate	2 to 12 inches of water column At least 30 gallons water per minute	Continuously and recorded once every eight hours when operating
C41	Regenerative Thermal Oxidizer	Operating temperature	At least 1575 F combustion chamber	Continuously with low temperature alarm
C12	Flare	Flame detection		Continuous during ethanol truck loading
F05	Leak Detection	As stated in 40 CFR Subpart VV	As stated in 40 CFR Subpart VV	As stated in 40 CFR Subpart VV
		Syrup Feed	TBD	Once every eight hours
		Beer Feed	TBD	Once every eight hours
P40	DDGS Dryer	Multiclone Pressure Drop	TBD	Once every eight hours
		Dryer inlet/outlet temperatures	TBD	Once every eight hours

All monitoring data collected above shall be recorded and maintained on-site. Any deviation of monitoring frequency, record keeping and range shall be reported in the quarterly reports and as required under other state and federal rules.

7.0 POLLUTION CONTROL DEVICE PERFORMANCE TEST SCHEDULE AND METHODS

The following schedule and methods will be used to demonstrate compliance with the emission limits contained in Section 4.0 of this Control Technology Plan and the consent decree.

Ace shall conduct the following performance testing pursuant to the schedule under paragraph 22 of the Consent Decree.

	417			
Bledellije'i		egyik: Legyiheoji		i Pogereillioe 193
Fermentation Scrubber	C20 /	Packed Bed Scrubber	VOC Inlet and Outlet, Speciated VOCs/HAPs	Method 1, 2, 3A, 4, Method 18 NCASI CI/WP-98.01 and VOC test method as approved by the parties in the Performance Test Plan Protocol.
Boiler #1	B50 S50		NOx	Method 1, 2, 3B, 4, and 7E
			со	Method 10
Ethanol Truck Loadout, Flare System	F04/C12	Ethanol truck loadout	Visible Emissions	Flare operation consistent with 40 CFR 60.18
DDGS Dryer #1, Regenerative Thermal Oxidizer	C40	Dryer#1 multiclones for PM/PM ₁₀ control	CO Inlet and Outlet	Method 1, 2, 3B, 4, and 10
	C41		NO _x (dryer outlet)	Method 1, 2, 3B, 4, and 7E
		Regenerative Thermal Oxidizer for VOC,	PM/PM ₁₀ Outlet	Method 1, 2, 3B, 4, 5 and 202
		PM/PM ₁₀ , and CO control.	VOC Inlet	Method 1, 2, 3B, 4, 25 (unless the outlet concentration is < 50 ppm, then 25A will be used)
			VOC Outlet, Speciated VOCs/HAPs	Method 1, 2, 3B, 4, Method 18 NCASI CI/WP-98.01 and 25 (unless the outlet concentration is < 50 ppm, then 25A will be used)

8.0 FUGITIVE DUST EMISSION CONTROL PROGRAM

The objectives of the Fugitive Control Program are to prevent and minimize the release of avoidable fugitive emissions as required by the consent decree. Beginning no later than 30 days following lodging of the Consent Decree, Ace will comply with the provisions set forth below.

Ace will document that all normal traffic routes used for truck and car traffic are paved.

Any deviations shall be reported in quarterly reports unless more frequent reporting is required by state or federal regulations.